
The Manor
Python Extensions Reference

Sep 12, 2004

MadWolf Software
support@madwolfsw.com

This manual assumes you are already familiar with Python (www.python.org). If you aren’t
already familiar with Python, no fear. If you have experience with other programming
languages, it’s fairly easy to pick up the basics of Python programming from looking at code
samples.

Each script that is loaded is placed in a separate Python module. The cyborg script is placed
in a module named “cyborg”. Spot scripts are placed in modules named “spot_##” where ##
is the ID of the spot. Spot scripts are also loaded in order, so later spots can import spot
modules that have already been loaded.

In addition, all scripts that wish to make calls to The Manor client will need to import the manor
module.

Entry Points
If these routines are present in your script, they will be called as detailed. If your script does
not contain at least one of these entry points, it won’t be called by The Manor client software.

mnr_signon
 cyborg only
 Called when a connection is established to a Manor server.

mnr_enter(userID)
 Called when a user enters the room.

mnr_leave(userID)
 Called when a user leaves the room.

mnr_spothit(spotID)
 spot script only
 This is only called for the spot script of the spot the user has clicked on.

mnr_spothitex(spotID)
 spot script only
 This is called when the user clicks on any spot in the room.

chatText mnr_inchat(userID, chatText)
 Called when chat text is received by the client, before it is displayed to the user.
 UserID Which user initiated the message.
 chatText: The text of the message

 Your script should do any processing desired on the text, and then return the chatText.
Your script may modify the chatText if desired, or clear the text.

chatText mnr_outchat(chatText)
Called when chat text is sent by the user, before the text is actually sent to the server.

mnr_statechange(spotID, stateID)
Called when the state of a spot changes.

handled mnr_render(gworld, layer)
spot script only
Called during room rendering operations.
gworld The room display gworld. This is an opaque gworld.
layer What layer of the room is being rendered

0 Nothing has been rendered
1 Room background has been rendered
2 Spots have been rendered
3 All rendering completed

handled returning non zero stops any further rendering

handled mnr_keydown(char, key)
Called when the user presses a key
char Character code of the key pressed
key Key code of the key pressed.

NOTE: Key codes differ between Macintosh and Windows systems
handled returning non zero stops any further processing for the key down

handled mnr_mousedown(x, y)
spot script only
Called when the user presses a key
x, y Mouse position within the room
handled returning non zero stops any further processing for the key down

Manor Calls
Output functions

say(chatText)
 Send chatText

whisper([userID, (userID...)], chatText)
 Send chatText to the users indicated by userID list as a whisper

logstr(text)
 Places text in the log

logErrStr(text)
 Places text in the log as an error (red text)

localMsg(msg)
Displays a system message balloon. Only the user sees this message, it is not transmitted
to the server.

statusMsg (msg, logit)
 Set a status message

dirtyRect(rect)
Marks a section of the room as needing to be rendered.

User functions

isRegistered()
Returns 1 if user is registered

userID myID
 Returns this users ID

name getUserName(userID)
 Returns the name of the user indicated by userID

count getRoomUserCount
 Returns the number of users in the room

x,y getUserPos(userID)
 Returns the position of the user indicated by userID

userID getIdxRoomUser(userIdx)
 Returns the id for an indexed user. UserIdx is 0 <= userIdx < getRoomUserCount

Spot functions

hitSpot(spotID)
Simulates user clicking a spot. Any smart spot actions will be taken after calling any spothit
scripts

setSpotState(spotID, stateID, global)
 Sets the current state of a spot
 spotID The spot whose state will be set.
 stateID state the spot is to be set to
 global if 0, spot is set locally, if 1 it is set globally

NOTE: If the spot contains state images, the new state image will not be displayed until
the next time the client cycles.

stateID getSpotState(spotID)
Returns the current state of a spot

title getSpotTitle(spotID)
Returns the title of a spot

count getSpotCount
Returns the number of spots in the room

spotID getIdxSpot(spotIdx)
Return the ID of the indexed spot. spotIdx is 0 <= spotIdx < getSpotCount

roomID getSpotDest(spotID)
Returns spots destination room ID

rect getSpotBounds(spotID)
Returns spots bounding rectangle

inSpot(spotID)
Return true if user is within the bounds of spotID.

isLocked(spotID)
Returns true if spotID is locked. If spotID does not exist or is not closable will return false.

lock(spotID)
Locks a spot. If spotID does not exist or is not closable an exception will be set.

unlock(spotID)
UnLocks a spot. If spotID does not exist or is not closable an exception will be set.

Prop functions

setProp(propList)
Sets the current worn props to those in proplist.

propID getTopPropID()
Returns the id of the top most prop

putProp(propID, x, y)
Place a prop in the room
propI The prop to place in the room.
x Horizontal position for the prop
y Vertical position for the prop

clearProps()
Remove all the worn props, i.e. naked

dropProp(x, y)
Drop the top prop in the the room at the location indicated by x and y

donProp(propID)
Put the prop on as the top most prop

doffProp()
Remove the top most prop

numProps()
Returns the number of currently worn props

removeProp(propID)
Removes propID from currently worn props

faceColor(r, g, b)
Change the face color to the rgb value in r, g, and b

face(faceNum)
Change the face to faceNum. FaceNum must be 0 – 15.

Navigation functions

gotoRoom(roomNum)
Change the current room to roomNum

roomName getRoomName()
Returns the name of the current room

roomNum getRoomNumber()
Returns the number of the current room

siteName getSiteName()
Returns the name of the current Manor

openConnection(url)
Open a url. If the url is a manor url, a connection will be opened to the manor server.
Otherwise the appropriate application will be launched for the URL.

setPos(x, y)
Set the users position

x,y getMouseRmPos()
Returns the current mouse positions clipped to the bounds of the room.

isDown stillDown()
Returns non-zero if the mouse button is still down.

Misc functions

boolean isKeyDown(keyCode)
Returns 1 is the key is down. Note keycodes are different on Mac vs Windows systems.

clientType getClientType()
Returns the client type. 0 = Mac OS9, 1 = Windows, 2 = Mac OSX

mills milliseconds()
Returns the number of milliseconds (1000ths of a second) since system start

ticks tickcount()
Returns the number of ticks (60ths of a second) since system start

setTimer(ticks, function, params)
Sets a timer function.
ticks The tick time the timer should be triggered.
function The function to be called when the timer triggers The function is of the form:

func(param)
params Parameters to pass to the trigger function. If you are calling this

from a class, this must be “self”.

playSound(sound)
Plays a sound file from the cache. If the sound file is not already in the cache an
exception is raised and the call returns. "sound" can either be just the name of the file to
play (i.e. "sound.wav") or it can be a full URL (i.e. "http://www.madwolfsw.com/sound.wav).
In most cases you will just want to use the name of the file to use your sites sounds.

fetchSound(sound, function, params)
Checks a sound is in the cache. If the sound is not in the cache, or is out of date,
downloads the sound to the cache. "sound" can either be just the name of the file to play
(i.e. "sound.wav") or it can be a full URL (i.e. "http://www.madwolfsw.com/sound.wav). In
most cases you will just want to use the name of the file to use your sites sounds.

function The function to be called when the sound is downloaded. The function is of
 the form: func(param)

params Parameters to pass to the completion function. If you are calling this
from a class, this must be “self”.

NOTE: If this is the first time the sound file has been used in a session it can take several
seconds for the download to complete even if the sound is already cached. This is normal
as it is the time it takes to verify the sound file is up to date.

fetchSoundObject(sound, function, params)
Checks a sound is in the cache. If the sound is not in the cache, or is out of date,
downloads the sound to the cache. "sound" can either be just the name of the file to load
(i.e. "sound.wav") or it can be a full URL (i.e. "http://www.madwolfsw.com/sound.wav). In
most cases you will just want to use the name of the file to use your sites sounds. Once
the sound is available it will be passed as an object to your completion function.

function The function to be called when the sound is downloaded. The function is of
the form: func(sound, params)

params Parameters to pass to the completion function. If you are calling this
from a class, this must be “self”.

NOTE: If this is the first time the sound file has been used in a session it can take several
seconds for the download to complete even if the sound is already cached. This is normal
as it is the time it takes to verify the sound file is up to date.

playSoundObject(soundObject, interupt, loop)
Plays a sound object. Sound objects should be kept small as they are kept in memory.
They are intended for use of sound effects in games.
soundObject The sound object returned by fetchSoundObject
interupt if not zero any other sound currently playing will be stopped
loop if not zero this sound will be played until stopped

stopSounds()
Stops any sounds that may be currently playing

broadcastData(msgID, isGlobal, data)
Broadcasts data to all the users. Global broadcasting requires being authenticated to a
group with global message permissions.

msgID 15 character string identifying the type of message
isGlobal if not zero, message is to be broadcast server wide
data any object to be sent

sendData(msgID, [userID, (userID...)], data)
Sends data to specific users..

msgID 15 character string identifying the type of message
userID list of users to send data to
data any object to be sent

regDataReceive(msgID, func, param)
Registers a function to receive message types

msgID 15 character string identifying the type of message
func Function to be called when msgID is received. The function is of the form:

func(userID, data, param)
param parameter to pass to receive function

Object Modules
rect
The rect object defines rectangles used by other graphics objects.

myRect = rect(top, left, bottom, right)

Function Behavior
offset(x, y) Offset the rectangle by x, y pixels
inset(x,y) Inset the rectangle by x, y pixels
t, l, b, r = bounds returns the bounds of the rectangle

Unary Behavior
| Union
& Intersection
= Copy
== Equal to
!= Not equal
> Area greater than
< Area less than

shape
shapes are predefined line drawings that can be manipulated as a single object. They also
draw slightly faster than drawing a comparable image with the gworld move and line
functions.

myShape = shape()

Function Behavior
move(x, y) Add a move point to the shape. x and y are relative to shape center.
line(x, y) Add a line point to the shape. x and y are relative to shape center.
draw(gworld, x, y) Draw the shape
rotate(a) Rotate the image to angle in radians. Zero is straight up, angles

proceeding clockwise. Rotation is always from the original shape
definition.

rect = bounds() Return the bounding rectangle

gworld
gworlds are offscreen graphics worlds. This is the workhorse object for graphics operations.

Function Behavior
foreColor(a, r, g, b) Set the foreground color to alpha, red, green, blue. Alpha values

are ignored when working with opaque gworlds.drawString(string)
Draw a string at the current pen position

stringWidth(string) Returns the pixel width of the string
fontHeight() Returns the pixel height of the font
fontAscent() Returns the ascent height of the font
penSize(h, v) Set the horizontal and vertical size of the pen
moveTo(x, y) Change the pen position
lineTo(x, y) Draw a line from the current pen position
frameRect(rect) Draw a frame around a rectangle
fillRect(rect) Fill a rectangle with the foreground color
frameOval(rect) Draw an oval within the bounds of a rectangle
fillOval(rect) Fill an oval within the bounds of a rectangle

SAMPLE CODE

Bouncing Text
This was the initial test script for very early gworld functionality

import manor

global xpos, ypos, xdir, ydir

xpos = 105
ypos = 112
xdir = 3
ydir = 3

def mover(param):
 global xpos, ypos, xdir, ydir

 manor.dirtyRect(rect(xpos - 50, ypos + 3, xpos + 50, ypos - 13))
 xpos += xdir
 ypos += ydir
 if (xpos > 510):
 xdir = -3
 if (xpos < 4):
 xdir = 3
 if (ypos > 380):
 ydir = -3
 if (ypos < 4):
 ydir = 3
 manor.dirtyRect(rect(xpos - 50, ypos + 3, xpos + 50, ypos - 13))
 manor.setTimer(manor.tickcount(), mover, 0)

def mnr_render(gworld, layer):
 global xpos, ypos, xdir, ydir

 handled = 0
 if layer == 1:
 gworld.moveTo(xpos, ypos)
 gworld.foreColor(0xFF, 0xFF, 0xFF, 0xFF)
 gworld.drawString("test")
 handled = 1
 return handled

def mnr_enter(userID):
 if userID == manor.myID() or manor.myID() == 0:
 manor.setTimer(manor.tickcount() + 1, mover, 0)

Bouncing Ball
A variation of the bouncing text to display a bouncing ball in response to the user saying
"ball" or "no ball" to stop. Assumes a room of 750x384

import manor

global xpos, ypos, xdir, ydir
global ball_on

xpos = 105
ypos = 112
xdir = 1
ydir = 1
ball_on = 0

def mover(param):
 global xpos, ypos, xdir, ydir, ball_on

 manor.dirtyRect(rect(xpos - 5, ypos - 5, xpos + 6, ypos + 6))
 xpos += xdir
 ypos += ydir
 if (xpos > 740):
 xdir = -1
 if (xpos < 5):
 xdir = 1
 if (ypos > 379):
 ydir = -1
 if (ypos < 5):
 ydir = 1
 manor.dirtyRect(rect(xpos - 5, ypos - 5, xpos + 6, ypos + 6))

 if ball_on != 0:
 manor.setTimer(0, mover, 0)

def mnr_render(gworld, layer):
 global ball_on

 if (layer == 1) and (ball_on == 1):
 gworld.foreColor(0xFF, 0xFF, 0, 0)
 gworld.fillOval(rect(xpos - 5, ypos - 5, xpos + 5, ypos + 5))
 return 0

def mnr_outchat(chatText):
 global ball_on

 if chatText == "ball":
 ball_on = 1
 manor.setTimer(0, mover, 0)
 chatText = ""

 if chatText == "no ball":
 ball_on = 0
 chatText = ""

 return chatText

